68 research outputs found

    An RF interference mitigation methodology with potential applications in scheduling

    Get PDF
    Software tools for interference analysis and mitigation were developed in the Communications Link Analysis and Simulation System (CLASS) environment for: communications performance evaluation; and mission planning. Potential applications are seen in analysis, evaluation, and optimization of user schedules. Tools producing required separation angles and potential interference intervals can be used as an aid to mutual interference mitigation within a scheduling system

    A method for interference mitigation in space communications scheduling

    Get PDF
    Increases in the number of user spacecraft and data rates supported by NASA's Tracking and Data Relay Satellite System (TDRSS) in the S and Ku bands could result in communications conflicts due to mutual interference. A method to mitigate interference while minimizing unnecessary scheduling restrictions on both TDRSS network and user resources, based on consideration of all relevant communications parameters, was developed. The steps of this method calculate required separation angles at TDRS and produce interference intervals, which can be used in the production of schedules free of unacceptable interference. The method can also be used as a basis for analysis, evaluation, and optimization of user schedules with respect to communications performance. Described here are the proposed method and its potential application to scheduling in space communications. Test cases relative to planned missions, including the Earth Observing System, the Space Station Manned Base, and the Space Shuttle are discussed

    Third International Symposium on Space Mission Operations and Ground Data Systems, part 1

    Get PDF
    Under the theme of 'Opportunities in Ground Data Systems for High Efficiency Operations of Space Missions,' the SpaceOps '94 symposium included presentations of more than 150 technical papers spanning five topic areas: Mission Management, Operations, Data Management, System Development, and Systems Engineering. The papers focus on improvements in the efficiency, effectiveness, productivity, and quality of data acquisition, ground systems, and mission operations. New technology, techniques, methods, and human systems are discussed. Accomplishments are also reported in the application of information systems to improve data retrieval, reporting, and archiving; the management of human factors; the use of telescience and teleoperations; and the design and implementation of logistics support for mission operations

    The 1992 Goddard Conference on Space Applications of Artificial Intelligence

    Get PDF
    The purpose of this conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The papers fall into the following areas: planning and scheduling, control, fault monitoring/diagnosis and recovery, information management, tools, neural networks, and miscellaneous applications

    The 1991 Goddard Conference on Space Applications of Artificial Intelligence

    Get PDF
    The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The papers in this proceeding fall into the following areas: Planning and scheduling, fault monitoring/diagnosis/recovery, machine vision, robotics, system development, information management, knowledge acquisition and representation, distributed systems, tools, neural networks, and miscellaneous applications

    The 1990 Goddard Conference on Space Applications of Artificial Intelligence

    Get PDF
    The papers presented at the 1990 Goddard Conference on Space Applications of Artificial Intelligence are given. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The proceedings fall into the following areas: Planning and Scheduling, Fault Monitoring/Diagnosis, Image Processing and Machine Vision, Robotics/Intelligent Control, Development Methodologies, Information Management, and Knowledge Acquisition

    Third International Symposium on Space Mission Operations and Ground Data Systems, part 2

    Get PDF
    Under the theme of 'Opportunities in Ground Data Systems for High Efficiency Operations of Space Missions,' the SpaceOps '94 symposium included presentations of more than 150 technical papers spanning five topic areas: Mission Management, Operations, Data Management, System Development, and Systems Engineering. The symposium papers focus on improvements in the efficiency, effectiveness, and quality of data acquisition, ground systems, and mission operations. New technology, methods, and human systems are discussed. Accomplishments are also reported in the application of information systems to improve data retrieval, reporting, and archiving; the management of human factors; the use of telescience and teleoperations; and the design and implementation of logistics support for mission operations. This volume covers expert systems, systems development tools and approaches, and systems engineering issues

    A method for interference mitigation in space communications scheduling

    Get PDF
    Increases in the number of user spacecraft and data rates supported by NASA's Tracking and Data Relay Satellite System (TDRSS) in the S and Ku bands could result in communications conflicts due to mutual interference. More attention must be paid to this problem in terms of communications scheduling. A method based on consideration of all relevant communications parameters has been developed to mitigate interference while minimizing unnecessary scheduling restrictions on both the TDRSS network and user resources. This method calculates required separation angles at TDRS and produces potential interference intervals, which can be used in the production of schedules free of unacceptable interference. The method also can be used as the basis for analysis, evaluation, and optimization of user schedules with respect to communications performance. This paper describes the method and its proposed application to scheduling in space communications. Test cases relative to missions operating at Ku-band, including Space Shuttle, are discussed

    Systems, methods and apparatus for developing and maintaining evolving systems with software product lines

    Get PDF
    Systems, methods and apparatus are provided through which an evolutionary system is managed and viewed as a software product line. In some embodiments, the core architecture is a relatively unchanging part of the system, and each version of the system is viewed as a product from the product line. Each software product is generated from the core architecture with some agent-based additions. The result may be a multi-agent system software product line

    An Optimizing Space Data-Communications Scheduling Method and Algorithm with Interference Mitigation, Generalized for a Broad Class of Optimization Problems

    Get PDF
    NASA's space data-communications infrastructure, the Space Network and the Ground Network, provide scheduled (as well as some limited types of unscheduled) data-communications services to user spacecraft via orbiting relay satellites and ground stations. An implementation of the methods and algorithms disclosed herein will be a system that produces globally optimized schedules with not only optimized service delivery by the space data-communications infrastructure but also optimized satisfaction of all user requirements and prescribed constraints, including radio frequency interference (RFI) constraints. Evolutionary search, a class of probabilistic strategies for searching large solution spaces, constitutes the essential technology in this disclosure. Also disclosed are methods and algorithms for optimizing the execution efficiency of the schedule-generation algorithm itself. The scheduling methods and algorithms as presented are adaptable to accommodate the complexity of scheduling the civilian and/or military data-communications infrastructure. Finally, the problem itself, and the methods and algorithms, are generalized and specified formally, with applicability to a very broad class of combinatorial optimization problems
    corecore